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CHAPTER 7
Spread Risk and Default

Intensity Models

T his chapter discusses credit spreads, the difference between risk-free and
default-risky interest rates, and estimates of default probabilities based

on credit spreads. Credit spreads are the compensation the market offers for
bearing default risk. They are not pure expressions of default risk, though.
Apart from the probability of default over the life of the security, credit
spreads also contain compensation for risk. The spread must induce investors
to put up not only with the uncertainty of credit returns, but also liquidity
risk, the extremeness of loss in the event of default, for the uncertainty of
the timing and extent of recovery payments, and in many cases also for legal
risks: Insolvency and default are messy.

Most of this chapter is devoted to understanding the relationship be-
tween credit spreads and default probabilities. We provide a detail example
of how to estimate a risk neutral default curve from a set of credit spreads.
The final section discusses spread risk and spread volatility.

7.1 CREDIT SPREADS

Just as risk-free rates can be represented in a number of ways—spot rates,
forward rates, and discount factors—credit spreads can be represented in a
number of equivalent ways. Some are used only in analytical contexts, while
others serve as units for quoting prices. All of them attempt to decompose
bond interest into the part of the interest rate that is compensation for credit
and liquidity risk and the part that is compensation for the time value of
money:

Yield spread is the difference between the yield to maturity of a credit-
risky bond and that of a benchmark government bond with the
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same or approximately the same maturity. The yield spread is used
more often in price quotes than in fixed-income analysis.

i -spread. The benchmark government bond, or a freshly initiated plain
vanilla interest-rate swap, almost never has the same maturity as a
particular credit-risky bond. Sometimes the maturities can be quite
different. The i- (or interpolated) spread is the difference between
the yield of the credit-risky bond and the linearly interpolated yield
between the two benchmark government bonds or swap rates with
maturities flanking that of the credit-risky bond. Like yield spread,
it is used mainly for quoting purposes.

z-spread. The z- (or zero-coupon) spread builds on the zero-coupon
Libor curve, which we discussed in Section 4.2. It is generally defined
as the spread that must be added to the Libor spot curve to arrive
at the market price of the bond, but may also be measured relative
to a government bond curve; it is good practice to specify the risk-
free curve being used. Occasionally the z-spread is defined using the
forward curve.

If the price of a τ -year credit-risky bond with a coupon of c
and a payment frequency of h (measured as a fraction of a year) is
pτ,h(c), the z-spread is the constant z that satisfies

pτ,h(c) = ch

τ
h∑

i=1

e−(rih+z)ih + e−(rτ +z)τ

ignoring refinements due to day count conventions.

Asset-swap spread is the spread or quoted margin on the floating leg of
an asset swap on a bond.

Credit default swap spread is the market premium, expressed in basis
points, of a CDS on similar bonds of the same issuer.

Option-adjusted spread (OAS) is a version of the z-spread that takes
account of options embedded in the bonds. If the bond contains no
options, OAS is identical to the z-spread.

Discount margin is a spread concept applied to floating rate notes. It
is the fixed spread over the current (one- or three-month) Libor
rate that prices the bond precisely. The discount margin is thus the
floating-rate note analogue of the yield spread for fixed-rate bonds.
It is sometimes called the quoted margin.

Example 7.1 (Credit Spread Concepts) Let’s illustrate and compare some
of these definitions of credit spread using the example of a U.S. dollar-
denominated bullet bond issued by Citigroup in 2003, the 47

8 percent
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fixed-rate bond maturing May 7, 2015. As of October 16, 2009, this (ap-
proximately) 5 200

360 -year bond had a semiannual pay frequency, no embedded
options, and at the time of writing was rated Baa1 by Moody’s and A– by
S&P. These analytics are provided by Bloomberg’s YAS screen.

Its yield was 6.36, and with the nearest-maturity on-the-run Treasury
note trading at a yield of 2.35 percent, the yield spread was 401 bps.

The i-spread to the swap curve can be calculated from the five- and six-
year swap rates, 2.7385 and 3.0021 percent, respectively. The interpolated
5 200

360 -year swap rate is 2.8849 percent, so the i -spread is 347.5 bps.
The z-spread, finally, is computed as the parallel shift to the fitted swap

spot curve required to arrive at a discount curve consistent with the observed
price, and is equal to 351.8 bps.

To see exactly how the z-spread is computed, let’s look at a more stylized
example, with a round-number time to maturity and pay frequency, and no
accrued interest.

Example 7.2 (Computing the z-Spread) We compute the z-spread for a five-
year bullet bond with semiannual fixed-rate coupon payments of 7 percent
per annum, and trading at a dollar price of 95.00. To compute the z-spread,
we need a swap zero-coupon curve, and to keep things simple, we assume
the swap curve is flat at 3.5 percent per annum. The spot rate is then equal
to a constant 3.470 percent for all maturities, as we saw in Section 4.2.

The yield to maturity of this bond is 8.075 percent, so the i-spread to
swaps is 8.075 − 3.50 = 4.575 percent. The z-spread is the constant z that
satisfies

0.95 = 0.07
2

5·2∑
i=1

e−(0.03470+z) 1
2 + e−(0.03470+z)5

This equation can be solved numerically to obtain z = 460.5 bps.

7.1.1 Spread Mark-to-Market

In Chapter 4.2, we studied the concept of DV01, the mark-to-market gain on
a bond for a one basis point change in interest rates. There is an analogous
concept for credit spreads, the “spread01,” sometimes called DVCS, which
measures the change in the value of a credit-risky bond for a one basis point
change in spread.

For a credit-risky bond, we can measure the change in market value
corresponding to a one basis point change in the z-spread. We can compute
the spread01 the same way as the DV01: Increase and decrease the z-spread
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by 0.5 basis points, reprice the bond for each of these shocks, and compute
the difference.

Example 7.3 (Computing the Spread01) Continuing the earlier example,
we start by finding the bond values for a 0.5-bps move up and down in the
z-spread. The bond prices are expressed per $100 of par value:

0.07
2

5·2∑
i=1

e−(0.03470+0.04605−0.00005) 1
2 + e−(0.03470+0.04605−0.00005)5 = 0.950203

0.07
2

5·2∑
i=1

e−(0.03470+0.04605+0.00005) 1
2 + e−(0.03470+0.04605+0.00005)5 = 0.949797

The difference is 95.0203 − 94.9797 = 0.040682 dollars per basis point
per $100 of par value. This would typically be expressed as $406.82 per
$1,000,000 of par value. The procedure is illustrated in Figure 7.1.

The spread01 of a fixed-rate bond depends on the initial level of the
spread, which in turn is determined by the level and shape of the swap
curve, the coupon, and other design features of the bond. The “typical”
spread01 for a five-year bond (or CDS) is about $400 per $1,000,000 of

1 bp

Spread01

459 460 461 462

94.95

95.00

95.05

F IGURE 7.1 Computing Spread01 for a Fixed-Rate Bond
The graph shows how spread01 is computed in Example 7.3 by shocking the
z-spread up and down by 0.5 bps. The plot displays the value of the bond for a
range of z-spreads. The point represents the initial bond price and corresponding
z-spread. The vertical grid lines represent the 1 bps spread shock. The horizontal
distance between the points on the plot where the vertical grid lines cross is equal
to the spread01 per $100 par value.



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c07 JWBT440-Malz August 17, 2011 17:1 Printer: To Come

Spread Risk and Default Intensity Models 235

200 300 400 500 600 700 800

340

360

380

400

420

440

460

480

F IGURE 7.2 Spread01 a Declining Function of Spread Level
The graph shows how spread01, measured in dollars per $1,000,000 of bond par
value, varies with the spread level. The bond is a five-year bond making
semiannual fixed-rate payments at an annual rate of 7 percent. The graph is
constructed by permitting the price of the bond to vary between 80 and 110
dollars, and computing the z-spread and spread01 at each bond price, holding the
swap curve at a constant flat 3.5 percent annual rate.

bond par value (or notional underlying amount). At very low or high spread
levels, however, as seen in Figure 7.2, the spread01 can fall well above or
below $400.

The intuition is that, as the spread increases and the bond price de-
creases, the discount factor applied to cash flows that are further in the
future declines. The spread-price relationship exhibits convexity; any in-
crease or decrease in spread has a smaller impact on the bond’s value when
spreads are higher and discount factor is lower. The extent to which the
impact of a spread change is attenuated by the high level of the spread de-
pends primarily on the bond maturity and the level and shape of the swap
or risk-free curve.

Just as there is a duration measure for interest rates that gives the pro-
portional impact of a change in rates on bond value, the spread duration
gives the proportional impact of a spread change on the price of a credit-
risky bond. Like duration, spread duration is defined as the ratio of the
spread01 to the bond price.

7.2 DEFAULT CURVE ANALYTICS

Reduced-form or intensity models of credit risk focus on the analytics of
default timing. These models are generally focused on practical applications
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such as pricing derivatives using arbitrage arguments and the prices of other
securities, and lead to simulation-friendly pricing and risk measurement
techniques. In this section, we lay out the basics of these analytics. Reduced
form models typically operate in default mode, disregarding ratings migra-
tion and the possibility of restructuring the firm’s balance sheet.

Reduced-form models, like the single-factor model of credit risk, rely
on estimates of default probability that come from “somewhere else.” The
default probabilities can be derived from internal or rating agency ratings,
or from structural credit models. But reduced form models are most often
based on market prices or spreads. These risk-neutral estimates of default
probabilities can be extracted from the prices of credit-risky bonds or loans,
or from credit derivatives such as credit default swaps (CDS). In the next
section, we show how to use the default curve analytics to extract default
probabilities from credit spread data. In Chapter 8, we use the resulting
default probability estimates as an input to models of credit portfolio risk.

Default risk for a single company can be represented as a Bernoulli trial.
Over some fixed time horizon τ = T2 − T1, there are just two outcomes for
the firm: Default occurs with probability π , and the firm remains solvent with
probability 1 − π . If we assign the values 1 and 0 to the default and solvency
outcomes over the time interval (T1, T2], we define a random variable that
follows a Bernoulli distribution. The time interval (T1, T2] is important: The
Bernoulli trial doesn’t ask “does the firm ever default?,” but rather, “does
the firm default over the next year?”

The mean and variance of a Bernoulli-distributed variate are easy to
compute. The expected value of default on (T1, T2] is equal to the default
probability π , and the variance of default is π (1 − π ).

The Bernoulli trial can be repeated during successive time intervals
(T2, T3], (T3, T4], . . . . We can set each time interval to have the same length
τ , and stipulate that the probability of default occurring during each of these
time intervals is a constant value π . If the firm defaults during any of these
time intervals, it remains defaulted forever, and the sequence of trials comes
to an end. But so long as the firm remains solvent, we can imagine the firm
surviving “indefinitely,” but not “forever.”

This model implies that the Bernoulli trials are conditionally indepen-
dent, that is, that the event of default over each future interval (Tj , Tj+1] is
independent of the event of default over any earlier ( j > i) interval (Ti , Ti+1].
This notion of independence is a potential source of confusion. It means that,
from the current perspective, if you are told that the firm will survive up to
time Tj , but have no idea when thereafter the firm will default, you “restart
the clock” from the perspective of time Tj . You have no more or less in-
formation bearing on the survival of the firm over (Tj , Tj + τ ] than you did
at an earlier time Ti about survival over (Ti , Ti + τ ]. This property is also



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c07 JWBT440-Malz August 17, 2011 17:1 Printer: To Come

Spread Risk and Default Intensity Models 237

called memorylessness, and is similar to the martingale property we noted
for geometrical Brownian motion in Chapter 2.

In this model, the probability of default over some longer interval can
be computed from the binomial distribution. For example, if τ is set equal to
one year, the probability of survival over the next decade is equal (1 − π )10,
the probability of getting a sequence of 10 zeros in 10 independent Bernoulli
trials.

It is inconvenient, though, to use a discrete distribution such as the
binomial to model default over time, since the computation of probabilities
can get tedious. An alternative is to model the random time at which a
default occurs as the first arrival time—the time at which the modeled event
occurs—of a Poisson process. In a Poisson process, the number of events
in any time interval is Poisson-distributed. The time to the next arrival of a
Poisson-distributed event is described by the exponential distribution. So our
approach is equivalent to modeling the time to default as an exponentially
distributed random variate. This leads to the a simple algebra describing
default-time distributions, illustrated in Figure 7.3.

In describing the algebra of default time distributions, we set t = 0 as
“now,” the point in time from which we are considering different time
horizons.

7.2.1 The Hazard Rate

The hazard rate, also called the default intensity, denoted λ, is the parameter
driving default. It has a time dimension, which we will assume is annual.1

For each future time, the probability of a default over the tiny time interval
dt is then

λdt

and the probability that no default occurs over the time interval dt is

1 − λdt

In this section, we assume that the hazard rate is a constant, in order
to focus on defining default concepts. In the next section, where we explore
how to derive risk-neutral default probabilities from market data, we’ll relax
this assumption and let the hazard rate vary for different time horizons.

1In life insurance, the equivalent concept applied to the likelihood of death rather
than default is called the force of mortality.



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c07 JWBT440-Malz August 17, 2011 17:1 Printer: To Come

238 FINANCIAL RISK MANAGEMENT

2 yr. default probability

1 yr. default probability

5 10 15 20 t

0.25

0.50

0.75

1.00

hazard rate 0.15

5 10 15 20 t

0.02

0.04

0.06

0.08

0.10

0.12

0.14

F IGURE 7.3 Intensity Model of Default Timing
The graphs are plotted from the perspective of time 0 and assume a value λ = 0.15,
as in Example 7.4.
Upper panel: Cumulative default time distribution 1 − e−λt. The ordinate of each
point on the plot represents the probability of a default between time 0 and the
time t represented by the abscissa.
Lower panel: Hazard rate λ and marginal default probability λe−λt. The ordinate of
each point on the plot represents the annual rate at which the probability of a
default between time 0 and the time t is changing. The marginal default probability
is decreasing, indicating that the one-year probability of default is falling over
time.
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7.2.2 Defaul t T ime Distr ibut ion Funct ion

The default time distribution function or cumulative default time distribu-
tion F (τ ) is the probability of default sometime between now and time t:

P [t∗ < t] ≡ F (t) = 1 − e−λt

The survival and default probabilities must sum to exactly 1 at every instant
t, so the probability of no default sometime between now and time t, called
the survival time distribution, is

P [t∗ ≥ t] = 1 − P [t∗ < t] = 1 − F (t) = e−λt

The survival probability converges to 0 and the default probability con-
verges to 1 as t grows very large: in the intensity model, even a “bullet-proof”
AAA-rated company will default eventually. This remains true even when
we let the hazard rate vary over time.

7.2.3 Defaul t T ime Density Funct ion

The default time density function or marginal default probability is the
derivative of the default time distribution w.r.t. t:

∂

∂t
P [t∗ < t] = F ′(t) = λe−λt

This is always a positive number, since default risk “accumulates”; that
is, the probability of default increases for longer horizons. If λ is small, it
will increase at a very slow pace. The survival probability, in contrast, is
declining over time:

∂

∂t
P [t∗ ≥ t] = −F ′(t) = −λe−λt < 0

With a constant hazard rate, the marginal default probability is positive
but declining, as seen in the lower panel of Figure 7.3. This means that,
although the firm is likelier to default the further out in time we look,
the rate at which default probability accumulates is declining. This is not
necessarily true when the hazard rate can change over time. The default time
density is still always positive, but if the hazard rate is rising fast enough
with the time horizon, the cumulative default probability may increase at an
increasing rather than at a decreasing rate.
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7.2.4 Condit ional Defaul t Probabi l i ty

So far, we have computed the probability of default over some time horizon
(0, t). If instead we ask, what is the probability of default over some horizon
(t, t + τ ) given that there has been no default prior to time t, we are asking
about a conditional default probability. By the definition of conditional
probability, it can be expressed as

P [t∗ < t + τ |t∗ > t] = P [t∗ > t ∩ t∗ < t + τ ]
P [t∗ > t]

that is, as the ratio of the probability of the joint event of survival up to time
t and default over some horizon (t, t + τ ), to the probability of survival up
to time t.

That joint event of survival up to time t and default over (t, t + τ )
is simply the event of defaulting during the discrete interval between two
future dates t and t + τ . In the constant hazard rate model, the probability
P [t∗ > t ∩ t∗ < t + τ ] of surviving to time t and then defaulting between t
and t + τ is

P [t∗ > t ∩ t∗ < t + τ ] = F (t + τ ) − F (t)

= 1 − e−λ(t+τ ) − (
1 − e−λt)

= e−λt (
1 − e−λτ

)
= [1 − F (t)]F (τ )

= P [t∗ > t] P [t∗ < t + τ |t∗ > t]

We also see that

F (τ ) = P [t∗ < t + τ |t∗ > t]

which is equal to the unconditional τ -year default probability. We can inter-
pret it as the probability of default over τ years, if we started the clock at zero
at time t. This useful result is a further consequence of the memorylessness
of the default process.

If the hazard rate is constant over a very short interval (t, t + τ ), then
the probability the security will default over the interval, given that it has
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not yet defaulted up until time t, is

lim
τ→0
τ>0

P [t < t∗ < t + τ |t∗ > t] = F ′(t)τ
1 − F (t)

= λτ

The hazard rate can therefore now be interpreted as the instantaneous con-
ditional default probability.

Example 7.4 (Hazard Rate and Default Probability) Suppose λ = 0.15.
The unconditional one-year default probability is 1 − e−λ = 0.1393, and
the survival probability is e−λ = 0.8607. This would correspond to a low
speculative-grade credit.

The unconditional two-year default probability is 1 − e−2λ = 0.2592.
In the upper panel of Figure 7.3, horizontal grid lines mark the one- and
two-year default probabilities. The difference between the two- and one-year
default probabilities—the probability of the joint event of survival through
the first year and default in the second—is 0.11989. The conditional one-
year default probability, given survival through the first year, is the difference
between the two probabilities (0.11989), divided by the one-year survival
probability 0.8607:

0.11989
0.8607

= 0.1393

which is equal, in this constant hazard rate example, to the unconditional
one-year default probability.

7.3 RISK-NEUTRAL ESTIMATES OF DEFAULT
PROBABIL IT IES

Our goal in this section is to see how default probabilities can be extracted
from market prices with the help of the default algebra laid out in the
previous section. As noted, these probabilities are risk neutral, that is, they
include compensation for both the loss given default and bearing the risk of
default and its associated uncertainties. The default intensity model gives us
a handy way of representing spreads. We denote the spread over the risk-free
rate on a defaultable bond with a maturity of T by zT. The constant risk-
neutral hazard rate at time T is λ∗

T. If we line up the defaultable securities
by maturity, we can define a spread curve, that is, a function that relates the
credit spread to the maturity of the bond.
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7.3.1 Basic Analyt ics of Risk-Neutral
Defaul t Rates

There are two main types of securities that lend themselves to estimat-
ing default probabilities, bonds and credit default swaps (CDS). We start
by describing the estimation process using the simplest possible security, a
credit-risky zero-coupon corporate bond.

Let’s first summarize the notation of this section:

pτ Current price of a default-free τ -year zero-coupon bond
pcorp

τ Current price of a defaultable τ -year zero-coupon bond,
rτ Continuously compounded discount rate on the default free bond
zτ Continuously compounded spread on the defaultable bond
R Recovery rate
λ∗

τ τ -year risk neutral hazard rate
1 − e−λ∗

τ Annualized risk neutral default probability

We assume that there are both defaultable and default-free zero-coupon
bonds with the same maturity dates. The issuer’s credit risk is then expressed
by the discount or price concession at which it has to issue bonds, compared
to the that on government bonds, rather than the coupon it has to pay to get
the bonds sold. We’ll assume there is only one issue of defaultable bonds,
so that we don’t have to pay attention to seniority, that is, the place of the
bonds in the capital structure.

We’ll denote the price of the defaultable discount bond maturing in τ

years by pcorp
τ , measured as a decimal. The default-free bond is denoted pτ .

The continuously compounded discount rate on the default-free bond is the
spot rate rτ of Chapter 4, defined by

pτ = e−rτ τ

A corporate bond bears default risk, so it must be cheaper than a risk-
free bond with the same future cash flows on the same dates, in this case $1
per bond in τ years:

pτ ≥ pcorp
τ

The continuously compounded τ -year spread on a zero coupon corporate is
defined as the difference between the rates on the corporate and default-free
bonds and satisfies:

pcorp
τ = e−(rτ +zτ )τ = pτ e−zτ τ

Since pcorp
τ ≤ pτ , we have zτ ≥ 0.
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The credit spread has the same time dimensions as the spot rate rτ . It is the
constant exponential rate at which, if there is no default, the price difference
between a risky and risk-free bond shrinks to zero over the next τ years.

To compute hazard rates, we need to make some assumptions about
default and recovery:

� The issuer can default any time over the next τ years.
� In the event of default, the creditors will receive a deterministic and

known recovery payment, but only at the maturity date, regardless of
when default occurs. Recovery is a known fraction R of the par amount
of the bond (recovery of face).

We’ll put all of this together to estimate λ∗
τ , the risk-neutral constant

hazard rate over the next τ years. The risk-neutral τ -year default probability
is thus 1 − e−λ∗

τ τ . Later on, we will introduce the possibility of a time-varying
hazard rate and learn how to estimate a term structure from bond or CDS
data in which the spreads and default probabilities may vary with the time
horizon. The time dimensions of λ∗

τ are the same as those of the spot rate
and the spread. It is the conditional default probability over (0, T), that
is, the constant annualized probability that the firm defaults over a tiny
time interval t + �t, given that it has not already defaulted by time t, with
0 < t < T.

The risk-neutral (and physical) hazard rates have an exponential form.
The probability of defaulting over the next instant is a constant, and the
probability of defaulting over a discrete time interval is an exponential
function of the length of the time interval.

For the moment, let’s simplify the setup even more, and let the recovery
rate R = 0. An investor in a defaultable bond receives either $1 or zero in τ

years. The expected value of the two payoffs is

e−λ∗
τ τ · 1 + (1 − e−λ∗

τ τ ) · 0

The expected present value of the two payoffs is

e−rτ τ [e−λ∗
τ τ · 1 + (1 − e−λ∗

τ τ ) · 0]

Discounting at the risk-free rate is appropriate because we want to estimate
λ∗

τ , the risk-neutral hazard rate. To the extent that the credit-risky bond
price and zτ reflect a risk premium as well as an estimate of the true default
probability, the risk premium will be embedded in λ∗

τ , so we don’t have to
discount by a risky rate.
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The risk-neutral hazard rate sets the expected present value of the two
payoffs equal to the price of the defaultable bond. In other words, if market
prices have adjusted to eliminate the potential for arbitrage, we can solve
Equation (7.1) for λ∗

τ :

e−(rτ +zτ )τ = e−rτ τ [e−λ∗
τ τ · 1 + (1 − e−λ∗

τ τ ) · 0] (7.1)

to get our first simple rule of thumb: If recovery is zero, then

λ∗
τ = zτ

that is, the hazard rate is equal to the spread. Since for small values of x
we can use the approximation ex ≈ 1 + x, we also can say that the spread
zτ ≈ 1 − e−λ∗

τ , the default probability.

Example 7.5 Suppose a company’s securities have a five-year spread of
300 bps over the Libor curve. Then the risk-neutral annual hazard rate over
the next five years is 3 percent, and the annualized default probability is
approximately 3 percent. The exact annualized default probability is 2.96
percent, and the five-year default probability is 13.9 percent.

Now let the recovery rate R be a positive number on (0, 1). The owner
of the bond will receive one of two payments at the maturity date. Either
the issuer does not default, and the creditor receives par ($1), or there is a
default, and the creditor receives R. Setting the expected present value of
these payments equal to the bond price, we have

e−(rτ +zτ )τ = e−rτ τ [e−λ∗
τ τ + (1 − e−λ∗

τ τ )R]

or

e−zτ τ = e−λ∗
τ τ + (1 − e−λ∗

τ τ )R = 1 − (1 − e−λ∗
τ τ )(1 − R)

giving us our next rule of thumb: The additional credit-risk discount on
the defaultable bond, divided by the LGD, is equal to the τ -year default
probability:

1 − e−λ∗
τ τ = 1 − e−zτ τ

1 − R

We can get one more simple rule of thumb by taking logs in Equation
(7.1):

−(rτ + zτ )τ = −rτ τ + log[e−λ∗
τ τ + (1 − e−λ∗

τ τ )R]
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or

zτ τ = − log[e−λ∗
τ τ + (1 − e−λ∗

τ τ )R]

This expression can be solved numerically for λ∗
τ , or we can use the

approximations ex ≈ 1 + x and log(1 + x) ≈ x, so e−λ∗
τ τ + (1 − e−λ∗

τ τ )R ≈
1 − λ∗

τ τ + λ∗
τ τ R = 1 − λ∗

τ τ (1 − R). Therefore,

log[1 − λ∗
τ τ (1 − R)] ≈ −λ∗

τ τ (1 − R)

Putting these results together, we have

zτ τ ≈ λ∗
τ τ (1 − R) ⇒ λ∗

τ ≈ zτ

1 − R

The spread is approximately equal to the default probability times the LGD.
The approximation works well when spreads or risk-neutral default proba-
bilities are not too large.

Example 7.6 Continuing the example of a company with a five-year spread
of 300 bps, with a recovery rate R = 0.40, we have a hazard rate of

λ∗
τ ≈ 0.0300

1 − 0.4
= 0.05

or 5 percent.

So far, we have defined spot hazard rates, which are implied by prices
of risky and riskless bonds over different time intervals. But just as we can
define spot and forward risk-free rates, we can define spot and forward
hazard rates. A forward hazard rate from time T1 to T2 is the constant
hazard rate over that interval. If T1 = 0, it is identical to the spot hazard
rate over (0, T2).

7.3.2 Time Scal ing of Defaul t Probabi l i t ies

We typically don’t start our analysis with an estimate of the hazard rate.
Rather, we start with an estimate of the probability of default π over a
given time horizon, based on either the probability of default provided by a
rating agency—the rightmost column of the transition matrix illustrated in
Table 6.2—or a model, or on a market credit spread.

These estimates of π have a specific time horizon. The default probabil-
ities provided by rating agencies for corporate debt typically have a horizon
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of one year. Default probabilities based on credit spreads have a time hori-
zon equal to the time to maturity of the security from which they are derived.
The time horizon of the estimated default probability may not match the
time horizon we are interested in. For example, we may have a default prob-
ability based on a one-year transition matrix, but need a five-year default
probability in the context of a longer-term risk analysis.

We can always convert a default probability from one time horizon to
another by applying the algebra of hazard rates. But we can also use a default
probability with one time horizon directly to estimate default probabilities
with longer or shorter time horizons. Suppose, for example, we have an
estimate of the one-year default probability π1. From the definition of a
constant hazard rate,

π1 = 1 − e−λ

we have

λ = log(1 − π1)

This gives us an identity

π1 = 1 − e− log(1−π1)

We can then approximate

πt = 1 − (1 − π1)t

7.3.3 Credit Defaul t Swaps

So far, we have derived one constant hazard rate using the prices of default-
free and defaultable discount bonds. This is a good way to introduce the
analytics of risk-neutral hazard rates, but a bit unrealistic, because corpo-
rations do not issue many zero-coupon bonds. Most corporate zero-coupon
issues are commercial paper, which have a typical maturity under one year,
and are issued by only a small number of highly rated “blue chip” compa-
nies. Commercial paper even has a distinct rating system.

In practice, hazard rates are usually estimated from the prices of CDS.
These have a few advantages:

Standardization. In contrast to most developed-country central govern-
ments, private companies do not issue bonds with the same cash
flow structure and the same seniority in the firm’s capital structure
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at fixed calendar intervals. For many companies, however, CDS
trading occurs regularly in standardized maturities of 1, 3, 5, 7, and
10 years, with the five-year point generally the most liquid.

Coverage. The universe of firms on which CDS are issued is large.
Markit Partners, the largest collector and purveyor of CDS data,
provides curves on about 2,000 corporate issuers globally, of which
about 800 are domiciled in the United States.

Liquidity. When CDS on a company’s bonds exist, they generally trade
more heavily and with a tighter bid-offer spread than bond issues.
The liquidity of CDS with different maturities usually differs less
than that of bonds of a given issuer.

Figure 7.4 displays a few examples of CDS credit curves.
Hazard rates are typically obtained from CDS curves via a bootstrap-

ping procedure. We’ll see how it works using a detailed example. We first
need more detail on how CDS contracts work. We also need to extend our
discussion of the default probability function to include the possibility of
time-varying hazard rates. CDS contracts with different terms to maturity
can have quite different prices or spreads.

Bank of America

Morgan Stanley

Ford Motor Co.

Ford Motor Credit

6m 1 2 3 4 5 7 10
0

500

1000

1500

2000

F IGURE 7.4 CDS Curves
CDS on senior unsecured debt as a function of tenor, expressed as an annualized
CDS premium in basis points, July 1, 2008.
Source: Bloomberg Financial L.P.
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To start, recall that in our simplified example above, the hazard rate
was found by solving for the default probability that set the expected present
value of the credit spread payments equal to the expected present value of
the default loss. Similarly, to find the default probability function using CDS,
we set the expected present value of the spread payments by the protection
buyer equal to the expected present value of the protection seller’s payments
in the event of default.

The CDS contract is written on a specific reference entity, typically a firm
or a government. The contract defines an event of default for the reference
entity. In the event of default, the contract obliges the protection seller to pay
the protection buyer the par amount of a deliverable bond of the reference
entity; the protection buyer delivers the bond. The CDS contract specifies
which of the reference entity’s bonds are “deliverable,” that is, are covered
by the CDS.

In our discussion, we will focus on single-name corporate CDS, which
create exposure to bankruptcy events of a single issuer of bonds such as
a company or a sovereign entity. Most, but not all, of what we will say
about how CDS work also applies to other types, such as CDS on credit
indexes.

CDS are traded in spread terms. That is, when two traders make a
deal, the price is expressed in terms of the spread premium the counterparty
buying protection is to pay to the counterparty selling protection. CDS may
trade “on spread” or “on basis.” When the spread premium would otherwise
be high, CDS trade points upfront, that is, the protection buyer pays the seller
a market-determined percentage of the notional at the time of the trade, and
the spread premium is set to 100 or 500 bps, called “100 running.” Prior
to the so-called “Big Bang” reform of CDS trading conventions that took
place on March 13, 2009, only CDS on issuers with wide spreads traded
“points up.” The running spread was, in those cases, typically 500 bps. The
reformed convention has all CDS trading points up, but with some paying
100 and others 500 bps running.

A CDS is a swap, and as such

� Generally, no principal or other cash flows change hands at the ini-
tiation of the contract. However, when CDS trade points upfront,
a percent of the principal is paid by the protection buyer. This has
an impact primarily on the counterparty credit risk of the contract
rather than on its pricing, since there is always a spread premium,
with no points up front paid, that is equivalent economically to any
given market-adjusted number of points upfront plus a running spread.
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There are generally exchanges of collateral when a CDS contract
is created.

� Under the terms of a CDS, there are agreed future cash flows. The
protection buyer undertakes to make spread payments, called the fee
leg, each quarter until the maturity date of the contract, unless and until
there is a default event pertaining to the underlying name on which
the CDS is written. The protection seller makes a payment, called the
contingent leg, only if there is a default. It is equal to the estimated loss
given default, that is, the notional less the recovery on the underlying
bond.2

� The pricing of the CDS, that is, the market-adjusted spread premium,
is set so that the expected net present value of the CDS contract is zero.
In other words, on the initiation date, the expected present value of the
fee leg is equal to that of the contingent leg. If market prices change, the
net present value becomes positive for one counterparty and negative
for the other; that is, there is a mark-to-market gain and loss.

The CDS contract specifies whether the contract protects the senior or
the subordinated debt of the underlying name. For companies that have
issued both senior and subordinated debt, there may be CDS contracts of
both kinds.

Often, risk-neutral hazard rates are calculated using the conventional
assumption about recovery rates that R = 0.40. An estimate based on fun-
damental credit analysis of the specific firm can also be used. In some cases,
a risk-neutral estimate is available based on the price of a recovery swap on
the credit. A recovery swap is a contract in which, in the event of a default,
one counterparty will pay the actual recovery as determined by the settle-
ment procedure on the corresponding CDS, while the other counterparty
will pay a fixed amount determined at initiation of the contract. Subject to
counterparty risk, the counterparty promising that fixed amount is thus able
to substitute a fixed recovery rate for an uncertain one. When those recov-
ery swap prices can be observed, the fixed rate can be used as a risk-neutral
recovery rate in building default probability distributions.

2There is a procedure for cash settlement of the protection seller’s contingent obli-
gations, standard since April 2009 as part of the “Big Bang,” in which the recovery
amount is determined by an auction mechanism. The seller may instead pay the
buyer the notional underlying amount, while the buyer delivers a bond, from a list of
acceptable or “deliverable” bonds issued by the underlying name rather than make
a cash payment. In that case, it is up to the seller to gain the recovery value either
through the bankruptcy process or in the marketplace.
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7.3.4 Bui ld ing Defaul t Probabi l i ty Curves

Next, let’s extend our earlier analysis of hazard rates and default probability
distributions to accommodate hazard rates that vary over time. We will add
a time argument to our notation to indicate the time horizon to which it
pertains. The conditional default probability at time t, the probability that
the company will default over the next instant, given that it has survived up
until time t, is denoted λ(t), t ∈ [0,∞).

The default time distribution function is now expressed in terms of an
integral in hazard rates. The probability of default over the interval [0, t) is

πt = 1 − e
∫ t

0 λ(s)ds (7.2)

If the hazard rate is constant, λ(t) = λ, t ∈ [0, ∞), then Equation (7.2)
reduces to our earlier expression πt = 1 − eλt. In practice, we will be esti-
mating and using hazard rates that are not constant, but also don’t vary
each instant. Rather, since we generally have the standard CDS maturities
of 1, 3, 5, 7, and 10 years available, we will extract 5 piecewise constant
hazard rates from the data:

λ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1

λ2

λ3

λ4

λ5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 < t ≤ 1
1 < t ≤ 3
3 < t ≤ 5
5 < t ≤ 7
7 < t

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The integral from which default probabilities are calculated via Equation
(7.2) is then

∫ t

0
λ(s)ds =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1t
λ1 + (t − 1)λ2

λ1 + 2λ2 + (t − 3)λ3

λ1 + 2λ2 + 2λ3 + (t − 5)λ4

λ1 + 2λ2 + 2λ3 + 3λ4 + (t − 7)λ5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 < t ≤ 1
1 < t ≤ 3
3 < t ≤ 5
5 < t ≤ 7
7 < t

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Now, let’s look at the expected present value of each CDS leg. Denote
by sτ the spread premium on a τ -year CDS on a particular company. The
protection buyer will pay the spread in quarterly installments if and only if
the credit is still alive on the payment date. The probability of survival up
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to date t is πt, so we can express this expected present value, in dollars per
dollar of underlying notional, as

1
4 × 103

sτ

4τ∑
u=1

p0.25u (1 − π0.25u)

where pt is the price of a risk-free zero-coupon bond maturing at time t. We
will use a discount curve based on interest-rate swaps. The summation index
u takes on integer values, but since we are adding up the present values of
quarterly cash flows, we divide u by 4 to get back to time measured in years.

There is one more wrinkle in the fee leg. In the event of default, the
protection buyer must pay the portion of the spread premium that accrued
between the time of the last quarterly payment and the default date. This
payment isn’t included in the summation above. The amount and timing
is uncertain, but the convention is to approximate it as half the quarterly
premium, payable on the first payment date following default. The implicit
assumption is that the default, if it occurs at all, occurs midway through the
quarter. The probability of having to make this payment on date t is equal
to πt−0.25 − πt, the probability of default during the interval (t − 1

4 , t]. This
probability is equal to the probability of surviving to time (t − 1

4 ] minus the
smaller probability of surviving to time t.

Taking this so-called fee accrual term into account, the expected present
value of the fee leg becomes

1
4 × 104

sτ

4τ∑
u=1

p0.25u

[
(1 − π0.25u) + 1

2

(
π0.25(u−1) − π0.25u

)]

Next, we calculate the expected present value of the contingent leg. If a
default occurs during the quarter ending at time t, the present value of the
contingent payment is (1 − R)pt per dollar of notional. We assume that the
contingent payment is made on the quarterly cash flow date following the de-
fault. The expected present value of this payment is obtained by multiplying
this present value by the probability of default during the quarter:

(1 − R)pt (πt−0.25 − πt)

The expected present value of the contingent leg is therefore equal to the
sum of these expected present values over the life of the CDS contract:

(1 − R)
4τ∑

u=1

p0.25u
(
π0.25(u−1) − π0.25u

)
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The fair market CDS spread is the number sτ that equalizes these two
payment streams, that is, solves

1
4 × 104

4τ∑
u=1

p0.25u

[
(1 − π0.25u) + 1

2

(
π0.25(u−1) − π0.25u

)]

= (1 − R)
4τ∑

u=1

p0.25u
(
π0.25(u−1) − π0.25u

)
(7.3)

Now we’re ready to estimate the default probability distribution. To
solve Equation (7.3), the market must “have in its mind” an estimate of
the default curve, that is the πt. Of course, it doesn’t: The sτ are found by
supply and demand. But once we observe the spreads set by the market, we
can infer the πt by backing them out of Equation (7.3) via a bootstrapping
procedure, which we now describe.

The data we require are swap curve interest data, so that we can estimate
a swap discount curve, and a set of CDS spreads sτ on the same name and
with the same seniority, but with different terms to maturity. We learned in
Chapter 4 how to generate a swap curve from observation on money-market
and swap rates, so we will assume that we can substitute specific numbers
for all the discount factors pt.

Let’s start by finding the default curve for a company for which we
have only a single CDS spread, for a term, say, of five years. This will
result in a single hazard rate estimate. We need default probabilities for
the quarterly dates t = 0.25, 0.50, . . . , 5. They are a function of the as-yet
unknown hazard rate λ: πt = e−λt, t > 0. Substituting this, the five-year CDS
spread, the recovery rate and the discount factors into the CDS valuation
function (7.3) gives us

1
4 × 104

sτ

4τ∑
u=1

p0.25u

[
e−λ u

4 + 1
2

(
e−λ u−1

4 − e−λ u
4

)]

= (1 − R)
4τ∑

u=1

p0.25u

(
e−λ u−1

4 − e−λ u
4

)

with τ = 5. This is an equation in one unknown variable that can be solved
numerically for λ.

Example 7.7 We compute a constant hazard rate for Merrill Lynch as of
October 1, 2008, using the closing five-year CDS spread of 445 bps. We
assume a recovery rate R = 0.40. To simplify matters, we also assume a flat
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swap curve, with a continuously compounded spot rate of 4.5 percent for
all maturities, so the discount factor for a cash flow t years in the future is
e0.045t. As long as this constant swap rate is reasonably close to the actual
swap rate prevailing on October 1, 2008, this has only a small effect on the
numerical results.

With τ = 5, sτ = 445, R = 0.40, we have

445
4 × 104

4·5∑
u=1

e0.045 u
4

[
e−λ u

4 + 1
2

(
e−λ u−1

4 − e−λ u
4

)]

= 0.60
4·5∑
u=1

e0.045 u
4

(
e−λ u−1

4 − e−λ u
4

)

This equation can be solved numerically to obtain λ = 0.0741688.

The bootstrapping procedure is a bit more complicated, since it involves
a sequence of steps. But each step is similar to the calculation we just carried
out for a single CDS spread and a single hazard rate. The best way to explain
it is with an example.

Example 7.8 We will compute the default probability curve for Merrill
Lynch as of October 1, 2008. The closing CDS spreads on that date for each
CDS maturity were

i τi (yrs) sτi (bps/yr) λi

1 1 576 0.09600
2 3 490 0.07303
3 5 445 0.05915
4 7 395 0.03571
5 10 355 0.03416

The table above also displays the estimated forward hazard rates, the ex-
traction of which we now describe in detail. We continue to assume a
recovery rate R = 0.40 and a flat swap curve, with the discount function
pt = e0.045t.

At each step i , we need quarterly default probabilities over the inter-
val (0, τi ], i = 1, . . . , 5, some or all of which will still be unknown when
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we carry out that step. We progressively “fill in” the integral in Equation
(7.2) as the bootstrapping process moves out the curve. In the first step,
we find

πt = 1 − eλ1t t ∈ (0, τ1]

We start by solving for the first hazard rate λ1. We need the discount factors
for the quarterly dates t = 1

4 , 1
2 , 3

4 , 1, and the CDS spread with the shortest
maturity, τ1. We solve this equation in one unknown for λ1:

1
4 × 103

sτ1

4τ1∑
u=1

p0.25u

[
e−λ1

u
4 + 1

2

(
e−λ1

u−1
4 − e−λ1

u
4

)]

= (1 − R)
4τ1∑
u=1

p0.25u

(
e−λ1

u−1
4 − e−λ1

u
4

)

With τ1 = 1, sτ1 = 576, and R = 0.40, this becomes

576
4 × 103

4∑
u=1

e0.045 u
4

[
e−λ1

u
4 + 1

2

(
e−λ1

u−1
4 − e−λ1

u
4

)]

= 0.60
4∑

u=1

e0.045 u
4

(
e−λ1

u−1
4 − e−λ1

u
4

)

which we can solve numerically for λ1, obtaining λ1 = 0.0960046. Once the
default probabilities are substituted back in, the fee and the contingent legs
of the swap are found to each have a fair value of $0.0534231 per dollar of
notional principal protection.

In the next step, we extract λ2 from the data, again by setting up an
equation that we can solve numerically for λ2. We now need quarterly
default probabilities and discount factors over the interval (0, τ2] = (0, 3].
For any t in this interval,

πt = e− ∫ t
0 λ(s)ds =

{
e−λ1t

e−[λ1+(t−1)λ2]

}
for

{
0 < t ≤ 1
1 < t ≤ 3

}

The default probabilities for t ≤ τ1 = 1 are known, since they use
only λ1.
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Substitute these probabilities, as well as the discount factors, recovery rate,
and the three-year CDS spread into the expression for CDS fair value to get:

1
4 × 103

sτ2

4τ1∑
u=1

p0.25u

[
e−λ1

u
4 + 1

2

(
e−λ1

u−1
4 − e−λ1

u
4

)]

+ 1
4 × 103

sτ2e
−λ1τ1

4τ2∑
u=4τ1+1

p0.25u

[
e−λ2( u

4 −τ1) + 1
2

(
eλ2[ u−1

4 −τ1] − eλ2( u
4 −τ1)

)]

= (1 − R)
4τ1∑
u=1

p0.25u

(
e−λ1

u−1
4 − e−λ1

u
4

)

+ (1 − R)e−λ1τ1

4τ2∑
u=4τ1+1

p0.25u

(
e−λ2[ u−1

4 −τ1] − e−λ2( u
4 −τ1)

)

and solve numerically for λ2.
Notice that the first term on each side of the above equation is a known

number at this point in the bootstrapping process, since the default proba-
bilities for horizons of one year or less are known. Once we substitute the
known quantities into the above equation, we have

490
4 × 103

4∑
u=1

e0.045 u
4

[
e−0.0960046 u

4 + 1
2

(
e−0.0960046 u−1

4 − e−0.0960046 u
4

)]

+ 490
4 × 103

e−0.0960046
4·3∑
u=5

e0.045 u
4

{
e−λ2( u

4 −1) + 1
2

[
eλ2( u−1

4 −1) − eλ2( u
4 −1)

]}

= 0.04545

+ 490
4 × 103

e−0.0960046
4·3∑
u=5

e0.045 u
4

{
e−λ2( u

4 −1) + 1
2

[
eλ2( u−1

4 −1) − eλ2( u
4 −1)

]}

= 0.60
4∑

u=1

e0.045 u
4

(
e−0.0960046 u−1

4 − e−0.0960046 u
4

)

+ 0.60
4·3∑
u=5

e0.045 u
4

[
eλ2( u−1

4 −1) − eλ2( u
4 −1)

]

= 0.05342 + 0.60
4·3∑
u=5

e0.045 u
4

[
eλ2( u−1

4 −1) − eλ2( u
4 −1)

]

which can be solved numerically to obtain λ2 = 0.0730279.
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Let’s spell out one more step explicitly and extract λ3 from the data.
The quarterly default probabilities and discount factors we now need cover
the interval (0, τ3) = (0, 5). For any t in this interval,

πt = e− ∫ t
0 λ(s)ds =

⎧⎨
⎩

e−λ1t

e−[λ1+(t−1)λ2]

e−[λ1+2λ2+(t−3)λ3]

⎫⎬
⎭ for

⎧⎨
⎩

0 < t ≤ 1
1 < t ≤ 3
3 < t ≤ 5

⎫⎬
⎭

The default probabilities for t ≤ τ2 = 3 are known, since they are functions
of λ1 and λ2 alone, which are known after the second step.

Now we use the five-year CDS spread in the expression for CDS fair
value to set up:

sτ3

4 × 103

4τ1∑
u=1

p0.25u

[
e−λ1

u
4 + 1

2

(
e−λ1

u−1
4 − e−λ1

u
4

)]

+ sτ3

4 × 103
e−λ1τ1

4τ2∑
u=4τ1+1

p0.25u

[
e−λ2

u
4 + 1

2

(
e−λ2

u−1
4 − e−λ2

u
4

)]

+ sτ3

4 × 103
e−[λ1τ1+λ2(τ2−τ1)]

4τ3∑
u=4τ2+1

p0.25u

[
e−λ3

u
4 + 1

2

(
eλ3

u−1
4 − eλ3

u
4

)]

= (1 − R)
4τ1∑
u=1

p0.25u

(
e−λ1

u−1
4 − e−λ1

u
4

)

+ (1 − R)e−λ1τ1

4τ2∑
u=4τ1+1

p0.25u

(
e−λ2

u−1
4 − e−λ2

u
4

)

+ (1 − R)e−[λ1τ1+λ2(τ2−τ1)]
4τ3∑

u=4τ2+1

p0.25u

(
eλ3

u−1
4 − eλ3

u
4

)

Once again, at this point in the bootstrapping process, since the default
probabilities for horizons of three years or less are known, the first two
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terms on each side of the equals sign are known quantities. And once we
have substituted them, we have

0.10974

+ 445
4 × 103

e−[λ1+2λ2]
4τ3∑

u=4τ2+1

p0.25u

{
e−λ3( u

4 −1) + 1
2

[
eλ3( u−1

4 −1) − eλ3( u
4 −1)

]}

= 0.12083 + 0.60
4τ3∑

u=4τ2+1

p0.25u

[
eλ3( u−1

4 −1) − eλ3( u
4 −1)

]

which can be solved numerically to obtain λ3 = 0.05915.
The induction process should now be clear. It is illustrated in Figure 7.4.

With our run of five CDS maturities, we repeat the process twice more. The
intermediate results are tabulated by step in the table below. Each row in the
table displays the present expected value of either leg of the CDS after finding
the contemporaneous hazard rate, and the values of the fee and contingent
legs up until that step. Note that last period’s value of either leg becomes
the next period’s value of contingent leg payments in previous periods:

i Either leg → τi Fee leg → τi−1 Contingent leg → τi−1

1 0.05342 0.00000 0.00000
2 0.12083 0.04545 0.05342
3 0.16453 0.10974 0.12083
4 0.18645 0.14605 0.16453
5 0.21224 0.16757 0.18645

The CDS in our example did not trade points up, in contrast to the
standard convention since 2009. However, Equation (7.3) also provides
an easy conversion between pure spread quotes and points up quotes
on CDS.

To keep things simple, suppose that both the swap and the hazard rate
curves are flat. The swap rate is a continuously compounded r for any term
to maturity, and the hazard rate is λ for any horizon. Suppose further that
the running spread is 500 bps. The fair market CDS spread will then be a
constant s for any term τ . From Equation (7.3), the expected present value
of all the payments by the protection buyer must equal the expected present
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F IGURE 7.5 Estimation of Default Curves
Upper panel shows the CDS spreads from which the hazard rates are computed
as dots, the estimated hazard rates as a step function (solid plot). The default
density is shown as a dashed plot.
Lower panel shows the default distribution. Notice the discontinuities of slope
as we move from one hazard rate to the next.

value of loss given default, so the points upfront and the constant hazard
rate must satisfy

points upfront
100

= (1 − R)
4τ∑

u=1

e−r u
4

(
e−λ u−1

4 − e−λ u
4

)

− 500
4 × 104

4τ∑
u=1

e−r u
4

[
e−λ u

4 + 1
2

(
e−λ u−1

4 − e−λ u
4

)]
(7.4)
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Once we have a hazard rate, we can solve Equation (7.4) for the spread from
the points upfront, and vice versa.

7.3.5 The Slope of Defaul t Probabi l i ty Curves

Spread curves, and thus hazard curves, may be upward- or downward-
sloping. An upward-sloping spread curve leads to a default distribution
that has a relatively flat slope for shorter horizons, but a steeper slope
for more distant ones. The intuition is that the credit has a better risk-
neutral chance of surviving the next few years, since its hazard rate and thus
unconditional default probability has a relatively low starting point. But even
so, its marginal default probability, that is, the conditional probability of
defaulting in future years, will fall less quickly or even rise for some horizons.

A downward-sloping curve, in contrast, has a relatively steep slope
at short horizons, but flattens out more quickly at longer horizons. The
intuition here is that, if the firm survives the early, “dangerous” years, it has
a good chance of surviving for a long time.

An example is shown in Figure 7.6. Both the upward- and downward-
sloping spread curves have a five-year spread of 400 basis points. The
downward-sloping curve corresponds to an unconditional default probabil-
ity that is higher than that of the upward-sloping curve for short horizons,
but significantly lower than that of the upward-sloping curve for longer
horizons.

Spread curves are typically gently upward sloping. If the market believes
that a firm has a stable, low default probability that is unlikely to change
for the foreseeable future, the firm’s spread curve would be flat if it reflected
default expectations only. However, spreads also reflect some compensation
for risk. For longer horizons, there is a greater likelihood of an unforeseen
and unforeseeable change in the firm’s situation and a rise in its default prob-
ability. The increased spread for longer horizons is in part a risk premium
that compensates for this possibility.

Downward-sloping spread curves are unusual, a sign that the market
views a credit as distressed, but became prevalent during the subprime crisis.
Figure 7.7 displays an example typical for financial intermediaries, that
of Morgan Stanley (ticker MS), one of the five large broker-dealers not
associated with a large commercial bank within a bank holding company
during the period preceding the crisis. (The other large broker-dealers were
Bear Stearns, Lehman Brothers, Merrill Lynch, and Goldman Sachs.) Before
the crisis, the MS spread curve was upward-sloping. The level of spreads
was, in retrospect, remarkably low; the five-year CDS spread on Sep. 25,
2006 was a mere 21 basis points, suggesting the market considered a Morgan
Stanley bankruptcy a highly unlikely event.
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Graph displays cumulative default distributions computed from these CDS
curves, in basis points:

Term Upward Downward

1 250 800
3 325 500
5 400 400
7 450 375

10 500 350

A constant swap rate of 4.5 percent and a recovery rate of 40 percent were used in
extracting hazard rates.

F IGURE 7.6 Spread Curve Slope and Default Distribution

The bankruptcy of Lehman Brothers cast doubt on the ability of any of
the remaining broker-dealers to survive, and also showed that it was entirely
possible that senior creditors of these institutions would suffer severe credit
losses. Morgan Stanley in particular among the remaining broker-dealers
looked very vulnerable. Bear Stearns had already disappeared; Merrill Lynch
appeared likely to be acquired by a large commercial bank, Bank of America;
and Goldman Sachs had received some fresh capital and was considered less
exposed to credit losses than its peers.

By September 25, 2008, the five-year CDS spread on MS senior unse-
cured debt had risen to 769 basis points. Its 6-month CDS spread was more
than 500 basis points higher at 1,325 bps. At a recovery rate of 40 percent,
this corresponded to about a 12 percent probability of bankruptcy over the
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F IGURE 7.7 Morgan Stanley CDS Curves, select dates
Morgan Stanley senior unsecured CDS spreads, basis points.
Source: Bloomberg Financial L.P.

next half-year. The one-year spread was over 150 times larger than two
years earlier. Short selling of MS common equity was also widely reported,
even after the company announced on September 25 that the Federal Reserve
Board had approved its application to become a bank holding company.

One year later, the level of spreads had declined significantly, though
they remained much higher than before the crisis. On Feb. 24, 2010, the MS
five-year senior unsecured CDS spread was 147 basis points, and the curve
was gently upward-sloping again.

7.4 SPREAD RISK

Spread risk is the risk of loss from changes in the pricing of credit-risky
securities. Although it only affects credit portfolios, it is closer in nature to
market than to credit risk, since it is generated by changes in prices rather
than changes in the credit state of the securities.

7.4.1 Mark-to-Market of a CDS

We can use the analytics of the previous section to compute the effect on
the mark-to-market value of a CDS of a change in the market-clearing
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premium. At initiation, the mark-to-market value of the CDS is zero; neither
counterparty owes the other anything. If the spread increases, the premium
paid by the fixed-leg counterparty increases. This causes a gain to existing
fixed-leg payers, who in retrospect got into their positions cheap, and a loss
to the contingent-leg parties, who are receiving less premium than if they
had entered the position after the spread widening. This mark-to-market
effect is the spread01 of the CDS.

To compute the mark-to-market, we carry out the same steps needed
to compute the spread01 of a fixed-rate bond. In this case, however, rather
than increasing and decreasing one spread number, the z-spread, by 0.5 bps,
we carry out a parallel shift up and down of the entire CDS curve by 0.5
bps. This is similar to the procedure we carried out in computing DV01 for
a default-free bond, in which we shifted the entire spot curve up or down
by 0.5 bps.

For each shift of the CDS curve away from its initial level, we recompute
the hazard rate curve, and with the shocked hazard rate curve we then
recompute the value of the CDS. The difference between the two shocked
values is the spread01 of the CDS.

7.4.2 Spread Volat i l i ty

Fluctuations in the prices of credit-risky bonds due to the market assessment
of the value of default and credit transition risk, as opposed to changes
in risk-free rates, are expressed in changes in credit spreads. Spread risk
therefore encompasses both the market’s expectations of credit risk events
and the credit spread it requires in equilibrium to put up with credit risk.
The most common way of measuring spread risk is via the spread volatility
or “spread vol,” the degree to which spreads fluctuate over time. Spread
vol is the standard deviation—historical or expected—of changes in spread,
generally measured in basis points per day.

Figure 7.8 illustrates the calculations with the spread volatility of five-
year CDS on Citigroup senior U.S. dollar-denominated bonds. We return
to the example of Citigroup debt in our discussions of asset price behavior
during financial crises in Chapter 14. The enormous range of variation and
potential for extreme spread volatility is clear from the top panel, which
plots the spread levels in basis points. The center panel shows daily spread
changes (also in bps). The largest changes occur in the late summer and early
autumn of 2008, as the collapses of Fannie Mae and Freddie Mac, and then
of Lehman, shook confidence in the solvency of large intermediaries, and
Citigroup in particular. Many of the spread changes during this period are
extreme outliers from the average—as measured by the root mean square—
over the entire period from 2006 to 2010.
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F IGURE 7.8 Measuring Spread Volatility: Citigroup Spreads 2006–2010
Citigroup 5-year CDS spreads, August 2, 2006, to September 2, 2010. All data
expressed in bps.
Source: Bloomberg Financial L.P.
Upper panel: Spread levels.
Center panel: Daily spread changes.
Lower panel: Daily EWMA estimate of spread volatility at a daily rate.
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The bottom panel plots a rolling daily spread volatility estimate, using
the EWMA weighting scheme of Chapter 3. The calculations are carried
out using the recursive form Equation (3.2), with the root mean square
of the first 200 observations of spread changes as the starting point. The
volatility is expressed in basis points per day. A spread volatility of, say, 10
bps, means that, if you believe spread changes are normally distributed, you
would assign a probability of about 2 out of 3 to the event that tomorrow’s
spread level is within ±10 bps of today’s level. For the early part of the
period, the spread volatility is close to zero, a mere quarter of a basis point,
but spiked to over 50 bps in the fall of 2008.

FURTHER READING

Klugman, Panjer, and Willmot (2008) provides an accessible introduction
to hazard rate models. Litterman and Iben (1991); Berd, Mashal, and Wang
(2003); and O’Kane and Sen (2004) apply hazard rate models to extract
default probabilities. Schönbucher (2003), Chapters 4–5 and 7, is a clear
exposition of the algebra.

Duffie (1999), Hull and White (2000), and O’Kane and Turnbull (2003)
provide overviews of CDS pricing. Houweling and Vorst (2005) is an em-
pirical study that finds hazard rate models to be reasonably accurate.

See Markit Partners (2009) and Senior Supervisors Group (2009a) on
the 2009 change in CDS conventions.


